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3.4 Förster theory

Atoms, molecules, clusters, and solids can exist in many different 
states in which they have the possibility to exchange energy.

Electronic excitation energy E

The possibility to exchange any kind of energy between atoms and molecules is responsible 
for the very short lifetime of excited rotational and vibrational states of  molecules in the gas 
phase at medium and at high pressure and especially also in condensed phase.

Green plants benefit from the possibility to transfer electronic excitation energy. They have 
developed very sophisticated tools for trapping and transporting electronic excitation energy  
in their antenna system. 

In molecular crystals and in some polymers which contain the right type and arrangement of 
chromophores energy quanta can be transported as „bound electron-hole packages“ over 
large distances.

Translational energy T

Rotational energy R

Vibrational energy V
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The mechanism responsible for the energy transfer depends on the kind of interaction
which determines the transfer probability.

Electromagnetic 
radiation field

Free photonsLarge distances

Dipole-Dipole
mechanism etc.

E-ENear field
interaction

Exchange mechanismE-EOverlap of the
electronic wave functions

T-R
T-V
R-V
(V-E)

T-T
R-R
V-V
E-E

Mechanical contact (impact)

3.1 Transfer of vibrational, rotational, and translational energy
The equilibrium of molecules in the gas-phase is characterized by a constant
(time independent) fraction ni of molecules in each possible energy state εi.

Boltzmann: Sum of states:

The comparison of kT with εi
shows above what temperature 
a state i starts to be occupied:
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 In absence of chemical reactions, thermal equilibrium is established by exchange of

 Example: a vibrationally excited HCl molecule (v = 0,1,2,...) collides with a molecule
 M and transforms its vibrational energy into translational energy of the two colliding 
 partners.

T → V transformation

V→ T  transformation

HCl (v=1) + M → HCl(v=0) + M δET = 2650 cm-1

HCl (v=0) + M → HCl(v=1) + M δET = -2650 cm-1

translational T
rotational    R

energy
vibrational  V
electronic   E

−⎧ ⎫
⎪ ⎪−⎪ ⎪
⎨ ⎬−⎪ ⎪
⎪ ⎪−⎩ ⎭

3 kinds of 
collisions:

elastic e
inelastic i
ractive r

collisions
− only exchange of translational energy

− energy transfer (different kinds of energy)
− chemical reactions

These processes can be observed by means of relaxation methods:

0 1dn dn 0
dt dt

− = =

Example: HCl is in a highly diluted environment of molecules M in gas phase.

n1 = number density of HCL(v = 1)

n = number density of the buffer gas M

n0 = number density of HCL(v = 0)

k10 is the rate constant for the V-T process which depletes the population in the v = 
1 state and k01 is that for the reverse T-V process which populates the v = 1 state.

At equilibrium there is no change in the populations:

10 1 01 0k nn k nn= − +0 1dn dn
dt dt

− =

10

01

k

k
HCl(v 1) M HCl(v 0) M⎯⎯→= + = +←⎯⎯

10

01

k

k
V T⎯⎯→←⎯⎯

1 0( ) / kT01 1

10 0 eq

k n e
k n

− ε −ε⎛ ⎞
= =⎜ ⎟

⎝ ⎠
h / kTe− ν=
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Relaxation time:

Relaxation method:

s,s-1

s-1,s

k

k
molecule(state s) + M molecule(state s-1) + M⎯⎯⎯→←⎯⎯⎯

10

01

k

k
HCl(v 1) M HCl(v 0) M⎯⎯→= + = +←⎯⎯

When the system is suddenly displaced from equilibrium (e.g. by a pulse of light of
frequency ν), the population of HCl in the v = 1 state will temporarily increase 
from its equilibrium value (n1)eq to (n1)eq +∆n1. The population of the v = 0 state will 
decrease by the corresponding amount.

Since the number density n of the inert buffer gas is proportional to its pressure, the
result of bulk relaxation studies are often given in terms of the product pτ (bar s). 

10

01

k

k
V T⎯⎯→←⎯⎯( )i i ieq

n n n= + ∆

( )1
1 1eq

dn d n n
dt dt

⎡ ⎤= + ∆⎣ ⎦
1d n

dt
∆

= ( ) ( )10 M 1 1 01 M 1 1eq eq
k n n n k n n n⎡ ⎤ ⎡ ⎤= − + ∆ + − ∆⎣ ⎦ ⎣ ⎦

( )1
10 01 M 1

dn k k n n
dt

= − + ∆ 1
1n= −∆
τ

( )M 10 01

1
n k k

τ =
+

E
T

∆ E∆ E∆
Eδ

TEδ

T increases with increasing energy gap E .τ δEnergy gap rule:

10 -8  R   ⇔    T
10 -1 0    near reso nantR   ⇔    R
10 -4  V   ⇔    T
10 -6  V   ⇔    R
10 -8     near resona ntV   ⇔    V
Rela xa tion tim e pτ (bar s).Process

(s ,s-1),(s 1,s )

(s 1,s ),(s ,s 1)

k

k
X(state s) X '(state s -1) X(state s -1) X '(state s)   near resonance−

− −

⎯⎯⎯⎯→+ +←⎯⎯⎯⎯

Overview of relaxation times

We observe that e.g. the off-resonance processes V⎯T and V⎯R are much less 
efficient than the near resonance transitions R⎯R and V⎯V. As a rule we can state 
that a large translational energy defect is an indication of an inefficient transfer process.

s,s-1

s-1,s

k

k
molecule(state s) + M molecule(state s-1) + M     off resonance⎯⎯⎯→←⎯⎯⎯



Electronic Excitation Energy Transfer. 
Lecture 3
Energy transfer EnT, theoretical aspects 5

Gion Calzaferri Fall 2004

3.2 Transfer of electronic excitation energy
2 fundamentally different kinds of electronic excitation energy transfer:
(a) energy transfer process during which free photons appear.
(b) energy transfer process during which no free photons appear.

An energy transfer process during which free photons appear is 
sometimes also referred to as „trivial“ transfer process.

absorption
emission

h                  electronically excited state⎯⎯⎯⎯⎯→ν ←⎯⎯⎯⎯⎯Excitation: 

reorganisation of the  
nuclear coordinates/
electron density distribution

chemo excitation

electronic excitation chemical/electrochemical
energy on the molecule free enthalpy

    
−

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯Transformation: 

relaxation processes
 of the 
nuclear coordinates

Planck emitter

electronic excitation heat
 

energy on the molecule disordered nuclear movement
   ⎯⎯⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯⎯⎯Transformation:

 

(weak) orbital overlap
(weak) orbital overlap

electronic excitation electronic excitation
energy on the donor  energy on the acceptor

    ⎯⎯⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯⎯⎯Energy transfer: 

 

near field interactions
near field interactions

electronic excitation electronic excitation
energy on the donor  energy on the acceptor

    ⎯⎯⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯⎯⎯Energy transfer: 

It is useful to distinguish between cases where the interaction energy between
D* and A of a (D*…A) pair is so small, that it can be neglected for most purposes, and 
cases where this interaction energy is large.  

The electronically excited state can no longer be described by one of the two configurations
( D*……A) and (D……A*). We speak about eximers (excited dimers) or exiplexes (excited complexes). The 
electronically excited states are described by means of exciton theory.

1.) The interaction energy between D and A is small in the electronic ground state 
(D……A) and also in the electronically excited states (D*……A)   and  (D……A*).

The molecules behave in any state as individuals which, however, can communicate with each
other via electromagnetic interactions, e.g. via a dipole-dipole interaction.

2.) The interaction energy between D and A is negligible in the electronic ground state 
(D……A). It is important, however, in the electronically excited states  
(D*……A), (D……A*), so that a non negligible splitting of the energy states occurs.  

D and A can be individual molecules in the gas phase, in a solution or in a solid matrix. 
They can, however also be connected by e.g. a hydrocarbon chain which can be regar-
ded as being inert with respect to the electronic states of A and B of interest.  

3.) The interaction energy between D and A is large.

( D……..A) is a complex, e.g. a charge transfer complex.
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W/(m2cm-1)spectral irradianc (intensity)

radiant power

irradiance (intensity)

Φ Watt

Watt/m2

We  describe systems in which the interaction energy between D and A is small in the 
electronic  ground state (D……A) as well as in the electronically excited states 
(D*…….A)   and  (D…….A*).

dE
dA
Φ

=

Absorption probability between the positions of the
source of emission and the absorption = a( ).λ

x
x+dx

Ελ(x+dx)Ελ(x)

x

dE E (x) E (x dx)λ λ λ= − +

absorption cross sectionλσ =

M, cdE (d) E (0) 10 λ
λ λ

−ε
=

M, cdE (0) E (d)
a( )  =1-10

E (0)
λλ λ

λ

−ε−
λ =

10M, log eλ λε = σ

M,

dE1 1
ln(10) c E   dx

λ
λ

λ

ε = −

3.3 Very weak interaction, a semiclassical approach
The interaction of molecules with light is described by means of a semiclassical approach, 
similar as it has been used by Hans Kuhn; see e.g.  Principles of Physical Chemistry, H. 
Kuhn and H.-D. Försterling, Wiley 2000)

c = concentration in mol/L

W/(m2nm)dEE
dλ =

λ

dE cE (x)dxλ λ λ= −σ

dEE
dλ =

λ

A is the cross section of the illuminated volume.

Number of absorbing molecules in this volume: NdN dV
V

= AnN dV
V

= AN cAdx=

Each molecule absorbs the energy dε of the 
electromagnetic radiation per time interval dt:

d
dt

dE dN
A

λ

λ

ε⎛ ⎞
⎜ ⎟
⎝ ⎠= − A

d
N cdx

dt
λε⎛ ⎞= − ⋅⎜ ⎟

⎝ ⎠

( )0

2

0 0
1E c F
2

λ
λ = ε

The intensity of the incoming light can be expressed by the square of the amplitude F0
of the field strength of the electromagnetic wave:

c0 = vacuum light velocity
ε0 =

M,

dE1 1
ln(10)c E   dxλ

λ

λ

ε = −
( )0

A
2

0 0

d2N 1
ln(10)c dtF

λ

λ

⎛ ⎞ε
= ⎜ ⎟ε ⎝ ⎠

-

kf

mass m
charge Q

Field strength F=F cos t0 ω

(Molecules are small with respect to the wavelength of light.)

vacuum dielectric constant

M,

0

To calculate the exctinction coefficient  we 
describe the molecule as classical oscillator of charge

EQ and mass m, which vibrates at frequency = .
h

λε

∆
ν

dE  is the decrease of intensity caused by the absorbing molecules within a volume dV = Adx. λ
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d
dt

λ
⎛ ⎞ε
⎜ ⎟
⎝ ⎠

2

f 02

dm k QF cos t
d

d
t dt

ξ
ρ

ξ
= − ξ − + ω

We first calculate the mean power for an isotropic damped classical oscillator of
mass m and charge Q.

The deflection ξ of the charge is described by the following differential equation:

kf = force constant
ρ = damping constant

0
2 2 2 2 2 2
0

QF 1 cos( t )
m ( ) m

ξ = ω + α
ω − ω + ρ ω

ω=2πν, ν is the frequency of the electric field of the light.

The energy dε, absorbed by the oscillator in the time interval dt, is equal to the product of the 
damping force ρdξ/dt and the change of elongation dξ divided by the time interval dt:

2d d
dt dt
ε ξ⎛ ⎞= ρ⎜ ⎟

⎝ ⎠

2 2 2
20

2 2 2 2 2 2 2
0

d Q F sin ( t )
dt m ( ) m
ε ω

= ρ ω + α
ω − ω + ρ ω

0
2 2 2 2 2 2
0

QF sin( t )
m ( ) m

d
dt

ω
= − ω + α

ω − ω + ρ ω

ξ

2sin ( tAverag )ing  over t:ω + α
2 2 2

0
2 2 2 2 2 2 2

0

1Q Fd
dt m (2 ) m
ε ω⎛ ⎞ = ρ⎜ ⎟ ω − ω + ρ ω⎝ ⎠

Hence, we find for the extinction coefficient:

2 2
A

2 2 2 2 2 2 2
0

M
0

,
0

2N Q 1
ln(10)c m 2 ( ) mλ

ω
= ρε

ε ω − ω + ρ ω

20 0
0M

A
,

d ln(10)c F
dt 2N

λ
λε

⎛ ⎞ε ε
=⎜ ⎟

⎝ ⎠
2

M, 0
d

g F
dt λ

λ
⎛ ⎞ε

=⎜ ⎟ ε
⎝ ⎠

0 0

A

ln(10)cg
2N

ε
=

( )0

A
2

0 0
M,

d2N 1
ln(10)c dt F

λ
λ

λ

⎛ ⎞ε
⎜ ⎟
⎝ ⎠

ε =
ε

3.3.1 Dipole-dipole interaction

We investigate an electronically excited molecule D* (energy donor), located at a  
distance r of a molecule A (acceptor). The electronic transition moments for the emission
of D* and for the absorption of A are assumed to be on the same axis aligned along r.

The electric field which acts on the acceptor A is equal to the Coulomb field F of the  
oscillators (donors) D*.

+
-

+-

electronic excitation

The size of the molecules is assumed to be small with respect to the wavelength of light.

We substitute D by a classical oscillator
of mass mof frequenc ν0 of charge Q of amplitude ξ0

2
f 0

1and of energy  E k
2

= ξ

ξ0

+-

+
-

0 0 F F cos2 t= πν

0
0 3

0

2Q  F
4 r

ξ
=

πε

r 

r is assumed to be much smaller than the wavelength λ=c0/ν0 of light, but large with
respect to the size of the molecules A and D (point-dipole approximation).

D* A

D D*
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+-
+
-

0 0  F F cos2 t= πν

3
0

0
0

2Q  F
4 r

ξ
=

πε

r D* A

A,

0

dThe mean power  absorbed by the acceptor A, is equal to the molar extinction coefficient , at energy ,
dt

 and it is proportional to the square of the field strength F  of the donors at the

λ

ε⎛ ⎞ ε λ⎜ ⎟
⎝ ⎠

 position of the acceptors:

4 2
20

03
fluorescence of D* 0 0

 Qd 1
dt 4 3c

ωε⎛ ⎞ = ξ⎜ ⎟ πε⎝ ⎠

where 0 0

A

ln(10)cg
N

3
2

ε
=

The factor 3 takes into account that we have assumed the transition moments of the
acceptors to be parallel to the field F. (Published decadic molar absorption coefficients 
usually refer to a statistic isotropic distribution in space.)

2
0A,

Energy transfer

d g F
dt λ

ε⎛ ⎞ = ε⎜ ⎟
⎝ ⎠

2 2
0

A, 62 2
0

4Qg
16 rλ

ξ
= ε

π ε

The mean electromagnetic power emitted by the oscillator D* corresponds to that of a  
“Hertz dipole” and can be expressed as follows:

2

0
A,

energy transfer 0
3

d 2Qg
rdt 4λ

⎛ ⎞ε ξ⎛ ⎞ = ε ⎜ ⎟⎜ ⎟ πε⎝ ⎠ ⎝ ⎠

2 3 4
20

03
0 0

4Q
3 c

π ν
= ξ

ε

0
0 3

0

2Q  F
4 r

ξ
=

πε

+-
+
-

0 0  F F cos2 t= πν
r D* A

2 2
0

A, 2 2
Energy  transfe 0

6
r

d 4Qg
dt 16 rλ
ε ξ⎛ ⎞ = ε⎜ ⎟ π ε⎝ ⎠

2 3 4
20

03
fluorescence of D* 0 0

d 4Q
dt 3 c
ε π ν⎛ ⎞ = ξ⎜ ⎟ ε⎝ ⎠

6
0

4
0A,

5 4
A 0

R
9 ln(10)c

4
128 N

λ
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

ε
π ν

At a specific D*….A distance r = R0, the portion of light which D* emits as fluorescence
is equal to the portion that jumps via energy transfer to A. Hence, we can write:

fluorescence of D*

d
dt
ε⎛ ⎞

⎜ ⎟
⎝ ⎠ energy transfer

d
dt
ε⎛ ⎞= ⎜ ⎟

⎝ ⎠

2 3 4
20

03
0 0

4Q
3 c

π ν
ξ

ε

22
0

A, 2
0

2 6
0

4Qg
16 Rλ

ξ
= ε

π ε
0 0

A

ln(10)cg
N

3
2

ε
=

These equations hold for donors which – in absence of acceptors – do fluoresce 
with a quantum yield φ=1, at a refractive index of the environment n=1, and for parallel 
arrangement of the transition moments of D* and A.

3
06

0
A,
5 4

0 0

3g c
16

R λε
=

π ε ν
orSolving for R0:



Electronic Excitation Energy Transfer. 
Lecture 3
Energy transfer EnT, theoretical aspects 9

Gion Calzaferri Fall 2004

+-
+
-

0 0  F F cos2 t= πν
r D* A

4
0A,

1/ 6

5 4
0

0
A

c9ln(10 4)
12

R
8 N

λ
⎛ ⎞

= ⎜ ⎟⎜ ⎟π⎝ ⎠

ε

ν

fluorescence of D*

d
dt
ε⎛ ⎞

⎜ ⎟
⎝ ⎠ energy  transfer

d
dt
ε⎛ ⎞= ⎜ ⎟

⎝ ⎠

The fluorescence quantum yield of D* , φD* , is in general smaller than 1, the 
refractive index n of the environment is larger than 1 and the orientation is different.

For the general case the factor 4 must be substituted by:

4
0A,

4
0

cλε
ν

D*
2

4n
φ κ

In general molecules do not show line spectra because of many line broadening 
interactions. Hence, the resonance condition is fulfilled in the whole range of spectral 
overlap between donor emission and acceptor absorption.

Therefore, the resonance factor

D*

1/6

5
A

2

0 4
9000ln(10

n
)R

128 N
J

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

κ=
π

φ

must be substituted by the integral J over the
range of spectral overlap.

Expressing the spectral overlap in cm3M-1 we get:

Examples for dyes in zeolite L:
spectral overlap J
and Förster Radius (n = 1.4)

D*

1/6

5
A

2

0 4
9000ln(10

n
)R

128 N
J

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

κ=
π

φ R0 is the Förster energy transfer radius

Jpy,py=1.1×10-13 cm3M-1

R0(κ2=4)    = 6.8 nm

Jpy,ox=2.3×10-13 cm3M-1

Jox,ox=4.4…×10-13 cm3M-1

R0(κ2=2/3) = 5.1nm

R0(κ2=4)     = 7.7 nm

R0(κ2=2/3) = 5.7 nm

R0(κ2=4)    = 8.6 nm

R0(κ2=2/3) = 6.4 nm

Py+ Ox+
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+-
+
-D* A

energy  transfer

fluorescence energy  transfer

d
dt

P
d d
dt dt

ε⎛ ⎞
⎜ ⎟
⎝ ⎠=

ε ε⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

The probability P 
for energy transfer is:

1P
C 1

=
+

energy  transfer

d
dt
ε⎛ ⎞

⎜ ⎟
⎝ ⎠

canceling

fluorescence

energy  transfer

d
dtC

d
dt

ε⎛ ⎞
⎜ ⎟
⎝ ⎠=

ε⎛ ⎞
⎜ ⎟
⎝ ⎠

2 2
0

A, 2 2 6
energy  transfer 0

d 4Qg
dt 16 rλ

ε ξ⎛ ⎞ = ε⎜ ⎟ π ε⎝ ⎠

5 4
0

3
6

A

0

0,

16
3 cg

r
λ

=
ν

ε
ε π

2 3 4
20

03
fluorescence of D* 0 0

d 4Q
dt 3 c
ε π ν⎛ ⎞ = ξ⎜ ⎟ ε⎝ ⎠

3 4 2
60 0

3
0 A,

2 2
2

0 2 2
0 0

16C r
3 c

4
4g

Q
Qλ

π ν
εε ξ

ε
ξ

π
=

5 4
0

3
0A

0
6

, 0

16
3 Rg c

1

λ

π ν
ε

ε
=

6

0

r
R

C
⎛ ⎞
⎜ ⎟
⎝ ⎠

=Hence:

R0 is equal to the donor- acceptor  
distance at which the probability for 
energy transfer is equal to 0.5.

( )6
0

1P
1 r R

=
+

r 1 120..:= r0 60:= Pr
1

1
r

r0

⎛
⎜
⎝

⎞

⎠

6
+

:=

0 60 1200

0.5

1

Pr

r

3
0A,

5 4
0

6
0

0

R g 3 c
16

λε

π ν
=

ε

3.3.2 Summary

A typical good value for R0
is in the order of 6 nm.

3.3.3 Energy migration
We consider a set of noninteracting molecules A. If one of them is excited to 
become A*, energy transfer to a neighboring A can take place. This processes is 
repeated until the excitation energy is captured by a trap or lost by e.g. 
luminescence or radiationless decay.

Energy transfer between the same kind of molecules is called energy migration.

A

A

A

A
A A

An important quality of this energy migration is, that it can not be observed by 
just measuring the luminescence decay of A*, as we shall discuss now..

hν
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A molecule A is excited electronically at time t = 0 by absorption of a photon.

ρA(t) is the probability that A is in the excited state at time t.

At t = 0 we have: ρA(0) = 1

Solving this equation gives:

0
0

1 1   and     
ii

kk
τ τ= =

∑

1A
A

d
dt
ρ

ρ
τ

= −

τ is the decay time (mean lifetime).

If all decay processes which result in deactivation of A* to the ground state are
of first order with the decay constants ki , we can write:

Decay of the excitation probability:

The luminescence yield φL can be expressed as follows: 0 0
0

1 ( ) L A t dt τφ ρ
τ τ

∞

= =∫

τ0 is the natural lifetime, which corresponds to the lifetime in the absence of other
relaxation processes.

( ) (0)
t

A At e τρ ρ
−

=

1 ( )
kA tρ

τ
This means that the decay of excitation probability  is accompanied by 

a balancing - out of the excitation probability among the individual molecules.

Since we are studying alike 
molecules, we have: kj jkF F=

1( )k

j k k

A
kj A A A

j

d
F

dt
ρ

ρ ρ ρ
τ

= − −∑

1( )k

j k k

A
kj A A A

k k j

d
F

dt
ρ

ρ ρ ρ
τ

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
1

kA
k

ρ
τ

= −∑

− =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ( ) 0 .
j kkj A A jk

k j

F F Fρ ρ kjThe double sum cancels : because is equal to 

We number the  alike molecules A with the indices k and j.
 →*

kIf there is a possibility for a radiationless transition A jA
ρ

ρ
k

i j

*
k A k

A

then the decrease of A  is proportional to the probability that A  is in the 
excited state. There is an equal increase of the excitation probability  of A .
Considering these processes between all molecules, we can write:

Considering not only the molecule Ak but the behavior of an ensemble we must sum over all cases:

Emission and energy transfer take place in parallel (at the same time). This formulation is different 
from the mechanism of self-absorption and reemission which are consecutive processes.
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1k

k

A
A

k k

d
dt
ρ

ρ
τ

= −∑ ∑
−

=Inserting ( ) (0)  leads to the following expression for the luminescence
k k

t

A At e τρ ρ

Solving this differential equation we find that the sum of the excitation probabilities for the 
individual molecules is:

−= /
0[ *]( ) [ *]  tA t A e τ

intensity which is observed after excitation of an ensemble of molecules A:

−= −∑ ∑ /1 (0)k

k

A t
A

k k

d
e

dt
τρ

ρ
τ

This means that on average the decay of luminescence of the ensemble is not affected. 
Hence, energy migration is not observed in a simple luminescence decay measurement.

This rises the question: How can migration of excitation energy be observed?

From this, we find:

There are several possibilities. One of them is based on the fact, that under many conditions, 
excitation energy migration causes a change of the polarization of the emitted light. This can 
be observed in stationary and in time resolved luminescence experiments.

Another possibility is to add luminescent traps at well defined positions in space.

−=∑ ∑/( ) (0) 
k k

t
A A

k k

t e τρ ρ

−= − ∑/1 (0)
k

t
A

k

e τ ρ
τ

Visualization of migration of electronic excitation energy
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n is a unit vector in direction of R. The dipole-dipole interaction is often the first term in a 
Taylor's series expansion of the electrostatic interaction between two neutral molecules.

The interaction energy VDi-Di between two dipoles µ1=l1q and µ2=l2q can be 
expressed as follows (µ1 and µ2 are vectors):

3.3.4 Comment on the dipole-dipole interaction and on the 
orientation factor κ

−
⋅ − ⋅ ⋅

= 3
0

3( )1
4Di DiV

Rπε
µ µ n µ n µ1 2 1 2)(

-

+

-

+

µ1 µ2
R

l2

l1

To do this, it is useful to investigate the 
following situation: We assume two fixed 
positive charges ea and eb at distance R, 
each of them compensated by a negative 
charge –ea and –eb.

It is often desirable to express the interaction energy VDi-Di between two dipoles in polar 
coordinates. It is convenient to introduce the factor κ in order to describe the angle 
dependence VDi-Di = VDi-Di (R,θ1,θ2,φ12).

10 1 2 1
04 1.11265 10 J C mπε − − −= ⋅

2 2

11 022 1 2

1 1 1 1 1
4a b

a b

a bb a

e e
r r

V e e
R r r r πε

−
⎧ ⎫⎛ ⎞⎪ ⎪= + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎭

−
⎝ ⎠⎩

From this follows, that the interaction energy 
Vdd between two dipoles can be expressed as:

The first four terms in this expression represent the mutual interaction of two dipoles and it is 
convenient to derive an approximate expression for this interaction by assuming that R is 
constant (hence, R changes only slowly with respect to the movements of the electrons) and 
that the distances between ea and –ea, and also between eb and –eb, are very short with 
respect to the distance R between the objects 1 and 2 (R >> r1a and R >> r2b). It also 
means, that the term indicated in blue color is of constant value and does not depend on R 
and, hence, also not on r12, r2a and r1b. This is the condition for a dipole-dipole interaction.

0 12 1 2

1 1 1 1
4

a b
dd

b a

e eV
R r r rπε

⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠

Then the potential energy is:

This expression can be expanded  
in a series along the indicated 
Cartesian coordinates:

( )= + − + +-4
1 2 1 2 1 23

0

1 2 Terms in R ...
4

a b
dd

e e
V x x y y z z

Rπε
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Neglecting higher terms, we get:

( )1 2 1 2 1 23
0

1 2
4

a b
dd

e eV x x y y z z
Rπε

= + −

z2 = l2 cos(θ2)z1 = l1 cos(θ1)

y2 = l2 sin(θ2) sin(φ2)

x2 = l2 sin(θ2) cos(φ2)

y1 = l1 sin(θ1) sin(φ1)

x1 = l1 sin(θ1) cos(φ1)

This equation is equivalent to: 3
0

3( )1
4Di DiV

Rπε−
−

=
n n1 2 1 2µ µ µ )( µ

x1 x2 + y1y 2 -2 z1 z2 = l1l2 {sin(θ1) sin(θ2)[cos(φ1) cos(φ2)+ sin(φ1) sin(φ2)]-2 cos(θ1) cos(θ2)}

cosφ12=cos(φ1-φ2)
cos(φ1−φ2)

( )1 2
1

0
12 1 223 sin s cosin 2cos cos

4
a b

dd
e e l lV

R
φθ θ θ θ

πε
= − 2

1
3

0
1

2
4

a be e l l
Rπ

κ
ε

=

We now express  the dependence of Vdd on the coordinates (R,θ1,θ2,φ12):

1 2
3 2

0
14

a b
dd

e e l lv
Rπε

κ=

( )1212 1 2 1 2cossin sin 2cos cosκ θ θ θφ θ= −

Hence, κ12 is an orientation factor which describes the dependence of the 
dipole-dipole interaction energy Vdd = Vdd (R,θ1,θ2,φ12)  on the relative orientation 
of the two dipoles with respect to each other.

Some values for κ (θ1,θ2,φ12 = 0): It is often more convenient to set the origin of 
the coordinate system in the middle of the 
dipoles and to use the following equivalent 
picture.

phi12 = 0°

θ1

θ2

Φ12=0

κ12
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3.4 Förster Theory
In order to occur, excitation energy transfer between an electronically excited molecule D* and 
an acceptor A requires some interaction between the excited and the unexcited molecules.

Energy transfer can take place if the acceptor molecule possesses transitions which are 
isoenergetic with transitions of  the excited donor molecule.

Transitions of this kind are resonance transi-
tions (RET=resonance energy transfer).

D*(0’) + A(0) → D(1) + A*(1’) 

D*(0’) + A(0) → D(0) + A*(2’) 

D*(0’) + A(0) → D(2) + A*(0’) 

Example: We assume, that the energy 
separations between two vibrational states
v,v+1 and v’,v’+1 of the donor and of the
acceptor are the same and that ∆E is twice 
this separation. This is shown in the figure 
where also the meaning of the numbers 
0, 1,…0’,1’,… is explained. In this case,
the following RET processes can take place: 

Transfer of electronic excitation energy can result from different interaction mechanisms.

Considering that only two electrons are involved in a transition, one on D and one on A, the 
properly antisymmetrized electronic wave functions for the initial excited state Ψi (D excited 
but not A) and the final excited state Ψf (A excited but not D) are: 

'i fHβ = Ψ Ψ

( )* *
1 (1) (2) (2) (1)
2i D A D AΨ = Ψ Ψ − Ψ Ψ The numbers 1 and 2 refer to the two 

electrons involved.

( )* *
1 (1) (2) (2) (1)
2f D A D AΨ = Ψ Ψ − Ψ Ψ

The interaction term between the initial and the final state can be expressed as:

H’ is the perturbation part of the Hamiltonian: = + +*
ˆ ˆ ˆ 'ADH H H H

( ) ( )
* * * *

1 1
(1) (2) (2) (1) ' (1) (2) (2) (1)

2 2
D A D A D A D A

Hβ = Ψ Ψ − Ψ Ψ Ψ Ψ − Ψ Ψ

Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ=* * * *2 2 2( ) ( ) ' ( ) ( ) ( ) ( ) ' ( ) ( )1 1 21 1D A D A D A D AH H

Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ=* * * *2 2 2( ) ( ) ' ( ) ( ) ( ) ( ) ' ( ) ( )1 1 1 1 2D A D A D A D AH H

Hence, β can be written as a sum of two terms:

exβ=

C exβ β β= −

Cβ=
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The Coulomb and the exchange interactions lead to two distinctly different energy transfer 
mechanisms which we can draw as follows.

Coulomb-
mechanism

Exchange-
mechanism

βC is the Coulomb term. It describes a situation in which the initially excited electron on D 
returns to the ground state orbital, while an electron on A is simultaneously promoted to the 
excited state.
βex, is the exchange term. It describes a situation which can be understood as an exchange 
of two electrons on D and A. 

The Coulomb term can be expanded into a sum of terms (multipole-multipole series).

=
2

12 ex
0 12

1For two electrons separated by a distance r  in the pair D...A, the perturbation H'  is: '
4ex
eH

rπε

( )= −122 1 22 11 cossin sin 2cos cosφθ θ θ θκ

The first dominant term is the dipole-dipole interaction term between the transition dipole 
moments µD and µA of D and A (for the transitions D*→D and A→A*) in an environment of 
refractive index n. Therefore the perturbation H’C can be expressed as: 

The exchange term represents the electrostatic interaction between the charged clouds. The 
transfer occurs via overlap of the electron clouds and requires physical contact between D 
and A. This means that the wave functions of D and A must overlap. This interaction is short 
range. 

2

122 3
0

1'
4C D A

DA

eH l l
n R

κ
πε

=
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D*(0’) + A(0) → D(1) + A*(1’) 

D*(0’) + A(0) → D(0) + A*(2’)  etc. 

D*(0’) + A(0) → D(2) + A*(0’) 

The energy transfer rate constant kEnT for electronic excitation energy of the type:

can be expressed by means of Fermi’s 
golden rule:

2
( * , *)

2
EnT D A DAk π β ρ=

h

where ρ is a measure of the density of the 
interacting initial D*…A and final D…A* 
states.
It is related to the overlap between the
emission spectrum of the donor and the
absorption spectrum of the acceptor.

(We abbreviate energy transfer with the EnT in order to disdinguish from electron
transfer, which is often abbreviated as ET.

3.4.1 Weak interaction between donor and acceptor molecules
In order to occur, excitation energy transfer requires some interaction between excited and 
unexcited molecules.

If this interaction is sufficiently strong, the electronic spectra of a mixture of donors and
acceptors will be different from electronic spectra of e.g. sufficiently diluted solutions of 
donors and acceptors. 

If this interaction is weak, e.g. in the order of 10 cm-1 or less, the electronic spectrum of a 
mixture of donors and acceptors will be a superposition of the spectra of sufficiently 
diluted solutions of the donors and of the acceptors separately.

While the medium and strong interaction cases are best discussed within the exciton theory 
and within the molecular orbital theory, respectively, the weak interaction case can be best 
understood by following the arguments given by Th. Förster in his original paper which 
appeared in Annalen der Physik, 6. Folge, Band 2 (1948) p. 55-75. This paper is, however, 
not easy to read and I have therefore tried to present the arguments in a more 
comprehensive way.

In order to calculate the rate constant kEnT, which describes how fast an excitation 
energy transfer occurs between an electronically excited donor D* and an acceptor A, 
we must calculate the product (βD*A)2ρD*A, according to Fermi’s golden rule.

Only the Coulomb term plays a role in a discussion of weak interactions, since the exchange 
term requires orbital overlap between the D* and A, which causes much larger interaction.
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We now consider only situations for which the exchange term can be neglected. This means 
that we concentrate on cases for which only the Coulomb term is of relevance.

The wave functions for the initial (i) and the final (f) states and the perturbation 
Hamiltonian H’ can therefore be expressed as: 

= Ψ Ψ* *AA A AAeµ l

*i D AΨ = Ψ Ψ

*f D AΨ = Ψ Ψ

2

122 3
0

1'
4C D A

DA

eH l l
n R

κ
πε

=

lD and lA are the coordinates of the electrons belonging to the D and A, respectively. 

we can write:'C i fHβ = Ψ Ψ

The two matrix elements are equal to the electronic transition moments µD*D and µAA*:

= Ψ Ψ Ψ Ψ* * *2 3
0

1 1

4
D A D D A A

DA

D A
n R

e eβ
πε

l l

= Ψ Ψ* *D D D DDeµ l

Inserting this in

=* 2 3
0

12* *
1 1

4
D A

DA

D D AA
n R

β
πε

κµ µ

=* 3

*
* *

'
D A

DA

D A
D D AA

R

κ
β µ µ

*
2

0

*
4

' D A
D A

n

κ

πε
κ =Using the definition of κ12, we have introduced before, and writing: we obtain:

This means that the rate constant of e.g. a transition 
D*(0’) + A(0) → D(0) + A*(2’), 
which we can also express as 
D*(0’) A(0) → D(0) A*(2’), is:

=
h

*
2

(0 ',0;0,2 ') (0 ',0;0,2 ')
2

D AEnTk
π

β ρ

This formula describes the energy transfer rate constant
between two selected levels which are in resonance.

In order to find all transitions which take place between D* and A, D*A→D A*, we must sum 
over all states which are in resonance.
We are interested in condensed phase. Hence, rotational levels play no role.
Denoting the states of the donor as (d‘,δ) and those of the acceptor with (α,a‘) the transfer 
rate constant can be expressed as follows:

*
2

( ', ; , ') ( ', ; , ')
2

D AEnT d a d ak δ α δ α
π

β ρ=
h
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We must sum over all iso-energetic 
situations. This means that we must sum 
over all donor and acceptor states which 
are in resonance.

Since energy transfer can be very fast, it is not sufficient to consider only the lowest vibrational
state of the donor. 

( ', ; , ')EnT EnT d ak k δ α= ∑
Spectra in condensed phase are usually
broadened due to solute solvent 
interactions and lattice vibrations.

Hence, the initial (i) and the final (f) levels of 
D*…A and D…A* are not well defined. 

We may therefore express the density of states ρE within on a continuous energy range.

We introduce the normalized functions SD(ΕD*) and SA(ΕA). SD(ΕD*) expresses 
the probability that (isolated) D* emits photons of energy ΕD*. SA(ΕA) is the 
probability  that A absorbs photons of energy ΕA. 

=∫ ( ) 1
Y

Y Y
E

S E dEγ

SD(ΕD*) and SA(ΕA) reflect the shape of the luminescence spectrum of D* and of the absorption 
spectrum of A, respectively.

The resonance condition can be expressed as follows:

The rate constant for the EnT D* + A → D + A* can 
be expressed as integral over the resonant energy range:

=
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∫∫h 3

*

*

2
2 2*

* * * *
,

'
( ( ))

2 ( ) A

DA
D A

EnT D
D A

D D D AA A D A D A
E E

S E S E
R

k E E dE dE
κπ δµ µ

Evaluation of this integral on a purely theoretical basis is often not possible and, fortunately, 
also not necessary. We now show that the transition moments times the distribution functions 
can be substituted by the lifetime and the shape of the luminescence spectrum of the donor 
D* and  by the absorption spectrum of the acceptor A. 
Instead of integrating over the energy E we integrate over the frequency ν. Since E = hν, dE
must be substituted by hdν. We also substitute ED* and EA by νD* and νA, respectively:

=
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∫∫h 3

*

*

2
2 2*

* * * *2
,

'
( ( ))

1 ( ) A

DA
D A

EnT D
D A

D D D AA A D A D AS S
R

k d d
ν ν

κ
ν ν δ ν ν ν νµ µ

D*AInserting , we get:      β

= + −* 0 '0 *
D

D D DE E ε ε

= + −0 '0 *
A

A A AE E ε ε
= −∫ * * *( )res D D A DE E E E dEδ

= −∫ ∫h
*

*

2
* * *( ( )

2
) ( ) D A A

D A

EnT DD A D A D A
E E

S E S Ek E E dE dEπ
β δ
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Connection between electronic transition moments and the Einstein coefficients:

1 3 3

* 1 3 2
( ) 1

( )D D
J s s mA

sm s J s

−

−
=

⋅ ⋅
=⎡ ⎤⎣ ⎦ ⋅ ⋅

( )
3

2 0 0
* 3 3 0

* *

43 1
32D D

D D

c
n
πε

µ
ν π τ

=
h

3
3*

* *3
0

8 D
D D D D

hA n B
c

π
ν

=

( )=
h

2
* *2 2

0

2 1 1
43AA AAB

n
π µ

πε

( )
3 3 2*

* *3
00

32
3 4

D
D D D D

nA
c

ν π µ
πε

=
h

* 0
*

1Since  we obtain:D D
D

A
τ

=

( )
3

20 0
* *3 3

*

43
32D D D D

D

cA
n
πε

µ
ν π

=
h

( )
22 2

* 0 *
3 4
2AA AAn Bµ πε
π

=
h

The dimension of BDD* is:

( )=
h

2
* *2 2

0

2 1 1
43D D D DB

n
π µ

πε

We check the dimension of AD*D:

( )
3

2
* 2 1 2 1 2

1 1
( )D D

mB C m
J s J C m J s− −

= ⋅ =⎡ ⎤⎣ ⎦ ⋅ ⋅

Connection between electronic transition moments and the Einstein coefficients:

1 1 3 3
1 3 1

1 1 2
Dimension of the right side

1 1 110 10
10

L mol cm m mm s m L
mJ s L J sJ s mol s cm
cm

− −
− − −

− − −
=

⋅ ⋅
⋅ = ⋅ =

⋅ ⋅⋅ ⋅

( )
32

* 0 02
10 ln(10) ( )3( ) 4

4 L

A A
AA A A

AN
S nc ε νµ ν πε

νπ
=

h

( )=
h

2
* *2 2

0

2 1 1
43AA AAB

n
π µ

πε ( )
22 2

* 0 *
3 4
2AA AAn Bµ πε
π

=
h

We now relate the Einstein coefficient weighted with the shape of the absorption spectrum
to the  molar extinction coefficient εA(ν) (see e.g. S.J. Strickler, R.A. Berg, J. Chem. Phys. 37 (1962) 814),
Förster, Fluoreszenz Organischer Verbindungen, Vandenbock&Ruprecht Göttingen, 1951) 

From this we find:

3
0

*
( )10 ln(10)( ) A A

AA A A
L A

cB S
hN n

ε νν
ν

=
The extinction coefficient εA(ν) is usually given in 
M-1cm-1 = Lmol-1cm-1. Using this we find:

This is correct since the dimension of SA(νA) is s:

Please note that the factor 103 depends on the dimension used for εA(ν). 
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=
5

9000 ln(10)

128 LN
fc

π

( ) =
h3

2 0 0
* 3 3 0

* *

43 1
32D D

D D

c
n
πε

ν π τ
µ ( ) =

h 3
2

* 0 02
10 ln(10) ( )3( ) 4

4 L

A A
AA A A

AN
S nc

ε ν
ν πε

νπ
µ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=
h 3

2 2
* * *2

2
*'1 ( ) ( )

DA

D D D D AA A A
D A

R
Q S S

κ
µ ν νµ

3
*

2
0

33
0 0

* 0 02 3 3 0 2
*

2

*

1

4

10 ln(10)4 ( )1 3 1 3( ) 4
32 4DA

D A

L

A A
D D

AD DnR N
cQ S nc

n
κ

πε

πε ε ν
ν πε

νν π τ π

⎞⎛
⎟⎜⎜ ⎟

⎝ ⎠
=

h h

h

Inserting this result and keeping in mind that we can set:
*

* * *( )
D

D D A D Ad
ν

ν δ ν ν ν ν− =∫

6
*

4

4 23
0

*5 0 3
* *

9 ( )10 ln(10) 1 ( )
128

D

D

A

A

A A
D D

L D D ARn

cQ S
N

κ ε ν
ν

π τ ν ν
=

=
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∫∫h 3

*

*

2
2 2*

* * * *2
,

'
( ( ))

1 ( ) A

DA
D A

EnT D
D A

D D D AA A D A D AS S
R

k d d
ν ν

κ
ν ν δ ν ν ν νµ µ

5

*

4 6

2

0
*

4
0 4

9000 ln(10)

128
 1 ( )

( )D A

L DA

EnT
D

A
D

nN R
k c S d

νπ

κ ε ν
ν

ντ
ν= ∫

= 0
* * *D D Dτ φ τ

The dimension of S(ν) is equal to that of ν-1. Hence, expressing the spectral overlap integral
in wave numbers, and using                      , we get:  

= 0cν ν

* 4
( )( ) A

DD A S dJ
ν

ν
ε νν ν
ν

= ∫

5

*

4 6

*
4

*

29000 ln(10)

128

( )
( )D A

DAL

EnT
D A

D
DnN R

k S d
νπ

κ φ ε ν
ν ν

τ ν
= ∫

*

4 65

*

*

2

*
9 ln(10)

128
D A

DAL

EnT
D

D A
Dn RN

k Jν
κ

π

φ
τ

=

The spectral overlap integral is usually 
abbreviated with the symbol J:

The above formula is correct if the dimension of [J] is chosen to be  cm6mole-1

For chemists the more  natural way to choose the dimension of the  spectral 
overlap integral is: [J] = [cm3M-1], [M] =[mol L-1]. The formula for the rate constant 
kEnT for energy transfer must then be expressed as follows:
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At a specific D*….A distance, the rate at which D* emits light is equal to the rate at 
which it transfers its excitation energy A. At this distance R0 we can write: 

From this we find the Förster radius R0
for electronic excitation energy transfer.

= −*
*

D
EnT D

d
k

dt
ρ

ρ

= −
*

*
*

1D
D

D

d
dt
ρ

ρ
τ

= *

4

2
6

0 * *
D A

D D A
n

fR Jc ν
κ

φInserting kEnT and solving for R0:=
*

1
T

D
Enk

τ

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

0

*

61
EnT

D

R

R
k

τ

Luminescence rate of D*:

Energy transfer rate:

Distance dependence of the energy transfer rate constant:

3.4.2 Förster energy transfer radius R0

R0 is equal to the donor- acceptor  distance at which the probability for energy 
transfer is equal to 0.5.
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3D* + 1A    → 1D + 1A*

1D* + 3A    → 1D + 3A**

3D* + 3A*    → 1D + 3A**

1D* + 1A    → 1D + 1A*

3.4.3 Dipole-dipole mechanism: selection rules

∝ ∫0
*

4(1 ( )
)EnT

A
D

D

k S d
ν

ε ν
ν

ντ
ν

The are no strict selection rules for Förster energy transfer. We can, nevertheless, 
get a good idea by considering the following proportionality:

This means that the energy transfer depends on the extinction coefficient of the accept
If a forbidden transition of the acceptor is involved, the energy transfer rate is
small. If the natural lifetime of the acceptor is large, the rate constant is scaled, 
correspondingly. Hence, the following energy transfer processes are examples of 
processes which can be regarded as being Förster energy transfer processes.

3.4.4 Examples for spectral overlap and Förster radius

JPyOx=2.4×10-13 cm3M-1

Py+ Ox+

R0 = 6 nm

D
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= ∫
Te spectral overlap JD*A between the emission
of an electronically excited molecule D* and a
molecule A is defined as:

Using the values for the fluorescence 
yield of the donor (φ = 1), the refractive
index of the medium (n=1.34) and the 
orientation factor κ2 = 2/3, we find the 
following value for the Förster Radius:

Knowing the spectral overlap integral, we 
can calculate the Förster EnT radius R0:
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The spectral overlap integral and hence also the Förster radius and the energy 
transfer rate constant are sometimes thought to decrease with decreasing 
temperature. This is, however not generally correct as it depends on the way the 
shape of the spectra change with changing temperature. 

Data from: Solid State Sciences 2 (2000, 421.

Fluorescence and excitation spectra of Py+-zeolite L (left) and Ox+-zeolite L (rigtht)
at 80 K (solid), 193 K (dotted) and 293 K (dashed), illustrating the development of 
the spectral overlap of the two molecules . The fluorescence spectra have 
been scaled to the same height as the corresponding excitation spectra.

Left: Fluorescence and excitation spectra of Py+, Ox+- zeolite L at 80 K (solid), 
193 K (dotted) and 293 K (dashed), illustrating the development of the spectral 
overlap between the fluorescence spectrum Py+ with the absorption spectrum of 
Ox+, in zeolite L. The fluorescence spectra have been scaled to the same height 
as the corresponding excitation spectra.

Right: Temperature dependence of the spectral overlap of the investigated 
donor/acceptor pairs in the channels of zeolite L.
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3.4.5 Calculating the spectral overlap from experimental data
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Emwn augment reverse XEmwn( ) reverse YEmwn( ),( ):=Abswn augment XAbswn( ) YAbswn( ),[ ]:=

The Y-vectors represent the measured (absorption) and the calculated (fluorescence) intensities of the 
specific spectrum. The X-vectors represent the wavenumbers, calculated from the wavelengths of the 
data.

XEmwny
107

Emwly 0,
:=XAbswnx

107

Abswlx 0,
:=

YEmwny Emwly 1, Emwly 0,( )2⋅:=YAbswnx Abswlx 1,:=

Now we can start the calculation. It has to be taken into account that besides the wavelength, the 
fluorescence intensity also has to be calculated in comparison to the absorption intensity: 
IEmission(wave numbers)=λ2IEmission(λ)

The read ASCII-files of the specific spectra are translated into matrix-variables. The content of the 
ASCII-files has to be in the same configuration as the calculating programm, otherwise an error 
occurs. 

y 0 1, LastEm 1−..:=x 0 1, LastAbs 1−..:=

LastEm length Emwl 0〈 〉( ):=LastAbs length Abswl 0〈 〉( ):=

Emwl READPRN "EmPySol.prn"( ):=Abswl READPRN "AbsOxSol.prn"( ):=

Reading the spectra:

Note: It is easier, to work with the absorption spectrum than to work with the excitation spectrum, 
because in the Förster-equation the spectral overlap integral is a function of the extinction coefficient, 
and the extinction coefficient is proportional to the absorption intensity.

Part A: Calculation of the absorption and emission spectra (which were measured as a function 
of wavelength) as a function of wavenumber.

MathCad-Program for calculation of the spectral overlap integral 
and the critical distance.

emlast EmwnLastEm 1− 0,:=abslast AbswnLastAbs 1− 0,:=

emfirst Emwn0 0,:=absfirst Abswn0 0,:=

For the calculation of the interpolated spectra the wavenumber range has to be set for the absorption 
and the emission.

The spectra now have to be interpolated at the same wavenumbers. The linterp-function generates a 
function by making linear interpolation between every 2 datapoints.

1 .104 2 .104 3 .104 4 .104 5 .104
0

5 .104

1 .105

wavenumber / cm-1

ex
tin

ct
io

n 
co

ef
fic

ie
nt

 / 
M

-1
cm

-1

This scaling allows a better picture of the overlap between the absorption and the fluorescence spectra. 
For the calculation of the spectral overlap integral however the fluorescence spectrum has to be 
normalised to 1.

Scaling of the fluorescence to the extinction coefficient.Emwn 1〈 〉 Emwn 1〈 〉 max Abswn 1〈 〉( )
max Emwn 1〈 〉( )

⎛
⎜
⎝

⎞

⎠
⋅:=

Abswn 1〈 〉 Abswn 1〈 〉

c length⋅
:=

Calculation of the absorption intensity in the extinction coefficient ε.

length 1:=

c 4.67 10 6−⋅:=
The concentration of the sample solution given in mol/l and the 
length of the light ray given in cm are needed to find out the 
extinction coefficient.

<1> of the matrix-variable Abs refers to the second column of the 
matrix, which contains the measured intensities of the absorption 
spectrum. With this command a baseline correction for the 
absorption measurement is executed.

Abswn 1〈 〉 Abswn 1〈 〉 min Abswn 1〈 〉( )−:=

x 0 1, LastνAbs 1−..:=LastνAbs length Abswn 0〈 〉( ):=

y 0 1, LastνEm 1−..:=LastνEm length Emwn 0〈 〉( ):=

To calculate the overlap integral, we have to read the files with data that are coupled to the emission 
and absorption to work with.

Part B: Calculation of the overlap integral of the calculated spectra of part A.

Note: In part B an interpolation is executed on the data which are put in the matrixes. For that it is 
necessary that the elements in the X-vector are ordered increasingly. This means that the elements in the 
X- and Y-vectors of the emission have to be reversed.

The X- and Y-vectors, which are coupled, have to be put in a matrix-variable, so that the calculated 
spectra can be plot. This happens with the function "augment".

ÅngstromR0 59.365=R0 R0 108⋅:=cmR0 5.937 10 7−×=R0 Joverl
9 ln 10( )⋅ φ⋅ κ2⋅

128 π
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⎞

⎠

1
6

:=

κ2 for isotropic conditions is 2/3.κ2
2
3

:=n 1.34:=φ 1:=1/molNA 6.022 1023⋅:=

The calculation of the overlap integral is finished. We can also calculate the critical distance. For that, we 
need information on the quantum yield of fluorescence of the donor φD, the refraction index n in the 
specific solvent and the orientation factor κ2. Na is the Avogadro-number.

cm6/molJoverl 2.41 10 10−×=Joverl j 103⋅:=When L is calculated in cm3:

L⋅cm3/molj 2.41 10 13−×=j
1
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Ftot
emfirst

emlast
νemEmiint νem( )⌠
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d:=b emlast:=a absfirst:=
For the calculation of the overlap integral j, 
the fluorescence has to be normalized at 
integral = 1.

νab absfirst absfirst 10+, abslast..:= νem emfirst emfirst 10+, emlast..:=

Absint νab( ) linterp Abswn 0〈 〉 Abswn 1〈 〉, νab,( ):= Emiint νem( ) linterp Emwn 0〈 〉 Emwn 1〈 〉, νem,( ):=

Now, let's look at the spectrum calculated by interpolation:
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Integration: Next, the integration range [a,b] for the 
overlap surface has to be defined. In principle [a,b] 
equals the range in wavenumbers of the overlap
region. Mostly, the overlap region is defined by 
the first absorption data and the last emission data. 
Be sure that both interpolated functions have data 
points in the integration range. This can be checked 
in the graph above. If this is not the case, 
then the integration range has to be adjusted!

Spectral 
overlap

The mathcad programs 
OverlapintegralSOL.mcd and
OverlapintegralLAYER.mcd can 

be downloaded at:
http://www.dcb.unibe.ch/groups
/calzaferri/start.html
(Computational Chemistry)
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An interesting situation could be created if we could keep the ratio of the donor and
the acceptor concentration constant but increasing both mean distance. This is 
usually not possible to realize over a sufficiently large concentration range because
of quenching phenomena. However, using zeolite L as host it is possible to realize
Experiments over a sufficiently large concentration range.
Dye loaded zeolite materials do not meet the conditions imposed by this theory
completely, because of substantial anisotropy, as we shall discuss in chapter 5. But
At the moment we assume that the theory is applicably without any restriction. Hence,
We describe the following experiments accordingly.  

Py+ Ox+

The two molecules pyronine Py+ and Oxonine Ox+ can be inserted into the channels
of zeolite L at the same rate so that zeolite nanocrystals containing a random mixture 
of theses strongly luminescent donor (Py+) and acceptor molecules can be prepared. 

3.4.6 A demonstration experiment for Förster Energy Transfer

Left: Scheme of a few channels of a zeolite L crystal containing acceptor A (red 
rectangles) and donor D  (green rectangles) molecules. Each rectangle marks 
a site which can be occupied by a dye molecules. Right: Main processes taking 
place after excitation of a donor: kEnT is the energy transfer rate constant, kF

A and 
kF

D are the fluorescence rate constants.
Taking into account radiationless processes, namely internal conversion kIC, 
intersystem crossing kISC, and bimolecular quenching kQ[Q] with a quencher Q,
the time dependent concentrations of the donor D and the acceptor A in the excited
state S1, [DS1] and AS1], can be expressed as follows, where jabs is the number of 
photons absorbed per unit time. 
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1 1

S A
EnT S S d

d

d A
k D A k

dt

⎡ ⎤
⎣ ⎦ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦∑1

1

S D
S d
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The fluorescence quantum yield of the donor ΦF
D and of the acceptor ΦF

A under
stationary conditions is therefore:
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A quantity we can measure with good accuracy, even in a hereogeneous system, 
is the ratio between the two fluorescence quantum yields ΦF

D and ΦF
A. This ratio is 

equal to the ratio of the corresponding luminescence intensities IFD and IFA
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